
COMPARISON OF A GENERALIZED PATTERN SEARCH AND A GENETIC
ALGORITHM OPTIMIZATION METHOD

Michael Wetter1 and Jonathan Wright2.
1Simulation Research Group, Building Technologies Department,

Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA.

2Department of Civil and Building Engineering, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, UK.

ABSTRACT
Building and HVAC system design can signifi-

cantly improve if numerical optimization is used.
However, if a cost function that is smooth in the de-
sign parameter is evaluated by a building energy sim-
ulation program, it usually becomes replaced with a
numerical approximation that is discontinuous in the
design parameter. Moreover, many building simula-
tion programs do not allow obtaining an error bound
for the numerical approximations to the cost func-
tion. Thus, if a cost function is evaluated by such
a program, optimization algorithms that depend on
smoothness of the cost function can fail far from a
minimum.

For such problems it is unclear how the Hooke-
Jeeves Generalized Pattern Search optimization al-
gorithm and the simple Genetic Algorithm perform.
The Hooke-Jeeves algorithm depends on smoothness
of the cost function, whereas the simple Genetic Al-
gorithm may not even converge if the cost function
is smooth. Therefore, we are interested in how these
algorithms perform if used in conjunction with a cost
function evaluated by a building energy simulation
program.

In this paper we show what can be expected from
the two algorithms and compare their performance in
minimizing the annual primary energy consumption
of an office building in three locations. The problem
has 13 design parameters and the cost function has
large discontinuities.

The optimization algorithms reduce the energy
consumption by 7% to 32%, depending on the build-
ing location. Given the short labor time to set up
the optimization problems, such reductions can yield
considerable economic gains.

INTRODUCTION
We compare the Hooke-Jeeves optimization al-

gorithm (HJ algorithm), which is a member of the
family of Generalized Pattern Search algorithms
(GPS algorithms), and the simple Genetic Algorithm
(sGA) on a theoretical level and by using numeri-
cal experiments. We will consider problems where

the cost function, such as annual energy use, is com-
putationally expensive, defined on continuous design
parameters, and evaluated by the whole-building en-
ergy simulation program EnergyPlus (Crawley et al.
2001). A similar discussion applies if other system
simulation programs, such as TRNSYS or COMIS,
are used to evaluate the cost function. Such programs
replace the cost function with a numerical approxi-
mation that is discontinuous in the design parame-
ters. Furthermore, their solvers are usually imple-
mented in such a way that establishing error bounds
is not possible. In these situations optimization can
only be applied heuristically, and it is not clear how
the HJ algorithm and the sGA perform if used in con-
junction with such discontinuous cost functions.

First, we define the optimization problem and dis-
cuss the properties of the cost function. Next, we de-
scribe what can be expected from the optimization al-
gorithms and show why the two algorithms are likely
to yield different results. Then, we present numerical
experiments that compare the performance of the al-
gorithms. We analyze the observed numerical prob-
lems and close by proposing the use of a hybrid opti-
mization algorithm.

PROBLEM STATEMENT
We consider problems of the form

min
x∈X

f (x), (1a)

where x ∈ X is the vector of design parameters,
f : X → R is the cost function, and X ⊂ R

n is the
constraint set, defined as

X �
{

x ∈ R
n | li ≤ xi ≤ ui, i ∈ {1, . . . ,n} }

, (1b)

with −∞ ≤ li < ui ≤ ∞, for all i ∈ {1, . . . ,n}.
In building design and heating, ventilation, and

air-conditioning (HVAC) system optimization,
evaluating the cost function usually requires solving
a differential algebraic system of equations. Under
appropriate assumptions, such systems have a
unique solution that is continuously differentiable
in the design parameter (Wetter and Polak 2003).

Eighth International IBPSA Conference
Eindhoven, Netherlands

August 11-14, 2003

- 1393 -- 1401 -

However, this solution must usually be approximated
numerically. In approximating the solution, Ener-
gyPlus uses adaptive variations in solver iterations
and adaptive integration meshes. For such solution
methods, a perturbation of the design parameter can
cause a change in the sequence of solver iterations,
which causes the cost function to be discontinuous.
Thus, when a smooth cost function, defined on the
design parameters, is evaluated by EnergyPlus, it
becomes replaced with an approximation that fails
to be even continuous.

Discontinuities can cause erratic behavior of opti-
mization algorithms. For ease of explanation, con-
sider the cost function to be f (x) = F(x) + e(x),
where f (x) is the numerical approximation of the
cost obtained by simulation, F(x) is the value of
the exact, smooth cost function, which is not avail-
able, and e(x) is the unknown approximation error.
Suppose that there exists a scalar δ > 0 such that
|e(x)| < δ, for all x ∈ X. Clearly, we are interested in
finding the minimum of F(·) and not the minimum
of f (·) because e(·) is of no physical significance.
However, the optimization algorithm can only use
values of f (·), and a difference in f (·) between two
points x′,x′′ ∈ X need not be a difference in F(·) if
| f (x′)− f (x′′)| < 2δ. Thus, if | f (x′)− f (x′′)| < 2δ,
then an optimization algorithm may make a wrong
decision about the descent of F(·). In such situations
the algorithm may behave erratically, which may re-
sult in failure or in many more function evaluations.

If high precision simulations can be used, then δ
can be made small, which improves the convergence
of the optimization algorithms. However, in Energy-
Plus many precision parameters are fixed at compile
time. Adjusting the different precision parameters
independently can cause such a differential algebraic
system of equations to diverge. Moreover, due to
the way the solvers are implemented, it seems to
be impossible to establish a scheme for adjusting
all precision parameters and to obtain an error
bound for the approximate solution. This obviously
limits the potential gains that optimization offers.
Therefore, we propose that simulation programs be
written such that precision can be changed without
recompilation. This would allow adjusting the
precision of at least some solvers that are expected
to cause large discontinuities in the cost function.
Moreover, if the numerical solvers are implemented
such that error bounds for the approximate solutions
can be obtained, then one can control the error such
that any Generalized Pattern Search (GPS) algorithm
converges to a stationary point of F(·) (see Polak
and Wetter 2003; Wetter and Polak 2003).

Because f (·) is discontinuous, it may only have
an infimum (i.e., a greatest lower bound) but no min-
imum even if X is compact. Thus, to be correct, (1a)
should be replaced by infx∈X f (x). For simplicity,
we will not make this distinction.

We will show that the cost function used in our nu-
merical experiments is not convex and therefore can
have multiple local minima. Thus, the optimization
algorithms can be attracted by a local minimum that
may be far from a global minimum.

ALGORITHM DESCRIPTION
Hooke-Jeeves Algorithm

The HJ algorithm is a member of the family of
GPS algorithms. Torczon (1997) and Audet and
Dennis (2003) proved that for problem (1) with
continuously differentiable cost function having
bounded level sets, any GPS method constructs a
sequence of iterates that converges to a stationary
accumulation point.

Let k ∈N denote the iteration number, and let xk ∈
X denote the current iterate. GPS algorithms have in
common that after a finite number of iterations, they
search for a lower cost function value than f (xk) on
the points in the set

Lk � {x ∈ X | x = xk ±∆k si ei, i ∈ {1, . . . ,n} }, (2)

where ∆k > 0 is a scalar called the mesh size fac-
tor, and s ∈ R

n is a fixed parameter that can be used
to take the different scaling of the design parame-
ter components into account. In addition, each GPS
algorithm has a rule that selects a finite number of
points in X on a mesh defined by

M(x0,∆k) � {x0 +m∆k si ei | i ∈ {1, . . . ,n}, m ∈ Z},
(3)

where x0 ∈ X is the initial iterate. It is this rule that
distinguishes the different GPS algorithms such as
the HJ algorithm or the Coordinate Search algorithm.

If a mesh point x′ ∈ M(x0,∆k) with f (x′) < f (xk)
has been found, then the search continues with
xk+1 = x′ and ∆k+1 = ∆k. Otherwise, all points in
Lk are tested for a decrease in f (·). If f (x′) ≥ f (xk)
for all x′ ∈ Lk, then the search continues with
xk+1 = xk and a reduced mesh size factor, say
∆k+1 = ∆k/2. Hence, the search continues on a
finer mesh. The search stops if the mesh M(x0, ·)
has been refined a user-specified number of
times. Thus, if ∆min denotes the smallest mesh
size factor, then the lowest point x∗ obtained by
a GPS algorithm satisfies f (x∗) ≤ f (x′) for all
x′ ∈ {x ∈ X | x = x∗±∆min si ei, i ∈ {1, . . . ,n} }.

- 1394 -- 1402 -

See Hooke and Jeeves (1961) for a more detailed
description of the HJ algorithm. See Torczon (1997)
and Audet and Dennis (2003) for a convergence anal-
ysis of GPS algorithms for smooth cost functions.
See Polak and Wetter (2003) and Wetter and Polak
(2003) for an algorithm that controls the precision of
the approximating cost function. Their algorithm en-
sures convergence to stationary points and can be ex-
ploited to obtain a significant reduction in computing
time.

Genetic Algorithm

GA are algorithms that operate on a finite set of
points, called a population. The different popula-
tions are interpreted as generations. They are derived
on the principles of natural selection and incorporate
operators for (1) fitness assignment, (2) selection
of points for recombination, (3) recombination of
points, and (4) mutation of a point.

Our GA is an implementation of the simple
GA described by Goldberg (1989), but we use a
Gray (Press et al. 1993) rather than a pure binary
encoding to represent the design parameters as a
concatenated string of binary numbers. In Gray
coding, if two integers are adjacent, then their binary
representation differs by only one bit.

For our sGA, all lower and upper bounds of X
need to be finite. Our sGA discretizes X in the mesh
M(l,1), and all operators are such that the real value
of any point is an element of M(l,1)∩X.

Some of the GA operators take as an argument a
set of points and return a set of points, whereas both
sets have a prescribed number of elements. To define
the domain and range of these operators, we need to
introduce some notation. Given a non-empty set X ⊂
R

n and a non-zero M ∈N, we define XM as the set of
all sequences in X with M elements, i.e.,

XM �
{{xi}M

i=1 | xi ∈ X, i ∈ {1, . . . ,M}}. (4)

We define B as the set that contains all elements of
M(l,1) ∩X as encoded concatenated strings of bi-
nary numbers (Goldberg 1989). We define BM as the
set of all sequences in B with M elements, i.e.,

BM �
{{χi}M

i=1 | χi ∈ B, i ∈ {1, . . . ,M}}. (5)

We will denote by k ∈ N the generation number, by
M ∈ N the population size, by xk ∈ XM the M points
in the k-th generation, and by χ

k
∈ BM the binary

representation of xk . For i ∈ {1, . . . ,M}, we will
write χ

k,i
to denote the i-th element of χ

k
. That is,

χ
k,i

is the binary representation of a point in R
n.

The sGA starts by generating an initial population
χ

0
∈ BM of M randomly generated points. Then, the

cost function is evaluated for each point in χ
k
, and a

fitness function Θ : N×BM →R
M computes for each

point in χ
k

a fitness value. The fitness of a point in-
dicates the worth of the point in relation to all other
points in the population. In our implementation, a
point with a low cost function value is considered to
be fitter than a point with a high cost function value.

For N ∈ N, with 0 < N < M, an elitism function
α : BM → BN selects the N fittest points of the gener-
ation. These points will be put in the next generation.

Afterwards, a selection function ϑ : N×BM → B2
selects a pair of points. The selection is probabilistic,
whereas fitter points are more likely to be selected,
i.e., we use a proportional selection algorithm.

A recombination function φ : N × B2 × [0,1] →
B2 recombines the selected points to a new pair of
points. We use a single-point crossover recombina-
tion. In a single-point crossover recombination, one
crossover position is randomly selected and the bits
after this position are exchanged between the two
points. The probability of recombination pr ∈ [0,1]
is an algorithm parameter.

Each recombined point is mutated by a mutation
function Ψ : N × B × [0,1] → B, which changes
the value of some bits of the binary representation.
The degree of mutation depends on the generation
number (Deb 2000), and the probability of mutation
is an algorithm parameter. Finally, both mutated
points are placed in the next generation.

Since it is difficult to check convergence for a
GA, we run the GA for a prescribed number of
generations.

Figure 1 shows our simple GA. The transforma-
tions from xk to χ

k
and from χ

k
to xk are not shown

explicitly.

Comparison of the Hooke-Jeeves Algorithm and
the Genetic Algorithm

The HJ algorithm does not explore the global
structure of the cost function and thus can get at-
tracted by any minimum, local or global. The HJ
algorithm constructs a sequence of iterates that con-
verge to a stationary point if the cost function is
smooth and coercive. If the cost function is discon-
tinuous, the HJ algorithm can fail at a discontinuity.

For the HJ algorithm, the design parameters must
be continuous. Audet and Dennis (2000) give an
extension that allows having discrete parameters.

- 1395 -- 1403 -

Simple Genetic Algorithm

Data: Step size s ∈ R
n for the discretization of X;

Probability for recombination pr ∈ [0,1];
Probability for mutation pm ∈ [0,1];
Number of generations K ∈ N;
Population size M ∈ N;
Number of elite points N ∈ N, 0 < N < M.

Maps: Fitness function Θ : N×BM → R
M;

Elitism function α : BM → BN ;
Selection function ϑ : N×BM → B2;
Recombination function
φ : N×B2 × [0,1]→ B2;
Mutation function Ψ : N×B× [0,1]→ B.

Step 0: Initialize k = 0, χ
k
∈ BM;

For j ∈ {1, . . . ,N}, evaluate f (xk, j).
Step 1: Compute Fitness

For j ∈ {N +1, . . . ,M}, evaluate f (xk, j);
Compute Θ(k,χ

k
).

Step 2: Select elite points
For j ∈ {1, . . . ,N}, set χ

k+1, j
=

(
α(χ

k
)
)

j;

Set i = N +1.
Step 3: Select pair

{χa,χb} = ϑ(k,χ
k
).

Step 4: Recombine pair
{χ′

a,χ′
b} = φ(k,{χa,χb}, pr).

Step 5: Mutate points
Set χ

k+1,i
= Ψ(k,χ′

a, pm);
If i+1 ≤ M

set χ
k+1,i+1

= Ψ(k,χ′
b, pm).

Step 6: Replace i by i+2;
If i+1 < M go to Step 3.

Step 7: Replace k by k +1;
If k < K go to Step 1, else stop.

Figure 1: Simple Genetic Algorithm used in the nu-
merical experiments.

The sGA starts with a population of points that are
randomly distributed in X. This reduces the risk of
being trapped in a local minimum that is not global.
However, little can be said about the convergence of
the sGA, even on smooth cost functions. In fact,
in the course of the optimization, the population of
points can collapse to a small subset of X. In such
situations, the sGA can fail far from a minimum, and
such a failure is difficult to detect. Therefore, defin-
ing a stopping criterion is difficult.

Since our GA works on a fixed discrete number of
points of X, it can also be used for problems with
discrete design parameters.

Figure 2: Simulated office floor.

NUMERICAL EXPERIMENTS
Cost Function

We attempt to solve (1) with n = 13 design param-
eters. For all examples, f (·) is the annual primary
energy consumption for lighting, fan, cooling and
heating of the mid-storey office floor shown in
Figure 2. Lighting and fan electricity are multiplied
by a factor of 3 and then added to the cooling and
heating energy of the cooling and heating coil.
f (·) is evaluated using an annual EnergyPlus 1.0.3
simulation. In the building shown in Figure 2, the
west and east facing zone, the interior zone, and one
north and one south facing zone are being simulated.
The energy consumption and the system load of the
north and south facing zones are multiplied by a
factor of 5 to account for the non-simulated zones
which are assumed to have the same conditions.
All zones have daylighting control. The simulated
HVAC system is a VAV system with DX coil and
outside-air economizer. The heating and cooling coil
capacities and the air flow rates are auto-sized by
EnergyPlus. The exterior walls have a U-value of
0.25W/(m2 K) and consist of (listed from outside
to inside) 1cm wood siding, 10cm insulation and
20cm concrete. The ceiling and floor consist of
carpet, 5cm concrete, insulation and 18cm concrete.
Interior walls are 12cm brick. Both windows are
low-emissivity double pane with Krypton gas fill and
exterior shading device. We use TMY2 weather data
for Houston Intercontinental (TX), Chicago O’Hare
(IL), and Seattle Tacoma (WA).

Table 1 shows the design parameters, their lower
and upper bound, and their step size used in the
optimizations. wi, i ∈ {N,W,E,S}, is a parameter
that scales linearly the window width and height.
The subscripts indicate north, west, east, and south,
respectively. (The location and shape of the windows
are used in the daylighting calculations.) For the
north and south windows, a value of 0 corresponds
to a window that covers 13.6% of the facade area
and 1 corresponds to 64.8%. For the west and east
windows, a value of 0 corresponds to a window

- 1396 -- 1404 -

Table 1: Variable symbols, base design (used as initial value for the HJ algorithm), lower bound, upper bound
and step size of the design parameter, and best obtained iterate of the HJ algorithm and the sGA. The variable
symbols are explained in the text. The last rows show the corresponding cost function values and the obtained
reduction in cost.

variable xb l u s
best iterate x∗, Houston best iterate x∗, Chicago best iterate x∗, Seattle

symbols HJ sGA HJ sGA HJ sGA

wN 0.5 0 1 0.05 0.03 0.6 0.00 0.00 0.51 0.60
wW 0.5 0 1 0.05 0.12 0.05 0.16 0.20 0.38 0.45
oW 0.5 0 1 0.05 0.99 1.00 0.99 0.95 0.99 1.00
wE 0.5 0 1 0.05 0.04 0.10 0.23 0.30 0.58 0.80
oE 0.5 0 1 0.05 1.00 1.00 0.99 1.00 0.96 1.00
wS 0.5 0 1 0.05 0.98 0.7 0.99 1.00 0.99 1.00
oS 0.5 0 1 0.05 0.00 1.00 0.00 0.55 0.89 0.90
sW 200 100 600 25 600 600 484 400 381 300
sE 200 100 600 25 575 600 348 250 288 225
sS 200 100 600 25 600 600 594 575 369 450
Tu 22 20 25 0.25 22.75 24.50 21.00 24.25 25.00 25.00
Ti 22 20 25 0.25 22.31 22.75 24.97 24.75 25.00 25.00
Td 15 12 18 0.25 12.94 12.25 12.66 14.50 12.00 12.25

f (xb) in kWh/(m2 a) 187.6 139.6 116.4
f (x∗) in kWh/(m2 a) 144.3 128.4 129.6 119.6 86.05 86.23
Obtained reduction in % 23.1 31.6 7.2 14.4 26.1 25.9

that covers 20.4% of the facade area and 1 corre-
sponds to 71.3%. oi, i ∈ {W,E,S}, is a parameter
that scales the depth of the window overhangs.
A value of 0 means that the window overhang
depth is 0.05 m (measured from the facade), and 1
means that the window overhang depth is 1.05 m.
si, i ∈ {W,E,S}, is the set point for the shading
device in W/m2. If the direct plus diffuse solar
radiation incident on the window exceeds si, then
an external shading device with a transmittance of
0.5 is activated. Ti, i ∈ {u, i}, is the set point for the
zone air temperature for night cooling in summer
and winter, respectively, in ◦C. Td is the cooling
design supply air temperature that is used for the
HVAC system sizing in ◦C. The column with header
xb shows the values of the design parameters for
the base design, l and u are the lower and upper
bounds, and s is the step size of the design parameter.

The base design is for all locations the same. No
simulations have been done to select the values of xb.

Algorithm Parameters

For the HJ algorithm we use the initial iterate
x0 = xb, the step size si, i ∈ {1, . . . ,n}, as shown in
Table 1, the initial mesh size factor ∆0 = 1 and 4
step reductions in which we set ∆k+1 = ∆k/2. Hence,
∆min = 1/16, and the best point x∗ found by the HJ
algorithm satisfies f (x∗) ≤ f (x′), for all x′ ∈ {x ∈
X | x = x∗± (si/16) ei, i ∈ {1, . . . ,n} }.

For the sGA we select a population size M = 15,
one elite point N = 1, a probability for recombination
pr = 1, a probability for mutation pm = 0.02, and a
number of generations K = 50. Thus, the maximum
number of function evaluations is K (M−N)+ N =
701. The choice of population size M, probabil-
ity of mutation pm and recombination pr is depen-
dent on the characteristics of the optimization prob-
lem, as well as the type of genetic algorithm opera-
tors (Deb 2001)1. Commonly used population sizes
M range from 5 to 100, the recombination probabil-
ity pr from 0.7 to 1.0, and the mutation probability
pm from 0.001 to 0.05. In general, a large number
of design parameters n, a large number of local min-
ima and a pronounced non-linearity of the cost func-
tion require a larger population size M and a higher
probability for recombination pr and mutation pm.
Increasing the population size M increases the di-
versity of the solutions and the likelihood of finding
the global minimum. The diversity in the popula-
tion can also be maintained through a high probabil-
ity of mutation pm. For our numerical experiments,
we selected a small population size M because the
number of design parameters is small and because
we expected the cost function to have no significant
local minima. The choice of a small population size

1Although the primary focus of this book is on multi-objective
evolutionary optimization, it includes a general and thorough dis-
cussion of the issues surrounding the choice of population size,
and the probability of mutation and recombination.

- 1397 -- 1405 -

M was balanced by a high probability of recombina-
tion pr and mutation pm. Small population sizes have
also been used successfully in the solution of other
small scale building design optimization problems
(M = 5) (Caldas and Norford 2002), although larger
scale highly constrained optimization problems have
required larger population sizes and a higher num-
ber of generations (M = 80, K = 1000) (Wright and
Farmani 2001). Further research is required to deter-
mine the most effective population size and proba-
bility of recombination and mutation for building de-
sign optimization problems, particularly in view of
the need to limit the number of cost function evalua-
tions which are typically computationally intensive.

Comparison of the Optimization Results

We used the optimization program GenOpt
2.0α (Wetter 2001)2 which called EnergyPlus 1.0.3
iteratively to evaluate the cost function. Both
programs were run on a 2.4 GHz computer under
Windows XP. All optimizations took about 24 hours
computation time.

Table 1 shows that significant energy saving were
obtained for all locations. For Houston and Chicago,
the sGA found a solution with lower cost than
the HJ algorithm. For these optimizations, the HJ
algorithm may have failed at a discontinuity of the
cost function, or may have been attracted by a local
minimum with higher cost function value than the
best iterate of the sGA.

In Figure 3, m ∈ N denotes the simulation number
and f (xm)/ f (xb) is the ratio of the m-th cost function
value and the cost function value of the base design.
The sGA requires less than the maximum number
of simulations since some points were generated
more than once. In such situations, no simulation is
done. Within 100 simulations, the sGA and the HJ
algorithm come close to its minimum cost function
value, except for the Seattle case, in which the HJ
algorithm requires about 200 simulations to come
close to its minimum cost function value.

In Figure 4, we show which part of the cost func-
tion is due to lighting, heating, fan, and cooling en-
ergy for the base design and for the best iterate of the
sGA for Houston.

Discontinuities in the Cost Function

Now we will show that the cost function has large
discontinuities. Let x∗H ∈ R

n denote the iterate with
the lowest cost function value obtained by the HJ

2Work for implementing a Genetic Algorithm for GenOpt 2.0
is currently in progress.

simulation number, m

f (xm)
f (xb)

0 100 200 300 400 500 600 700
0.6

0.8

1.0

1.2

1.4

sGAHJ

(a) Houston, TX

simulation number, m

f (xm)
f (xb)

0 100 200 300 400 500 600 700
0.6

0.8

1.0

1.2

1.4

sGAHJ

(b) Chicago, IL

simulation number, m

f (xm)
f (xb)

0 100 200 300 400 500 600 700
0.6

0.8

1.0

1.2

1.4

HJ

sGA

last simulation
of sGA

HJ

(c) Seattle, WA

Figure 3: Normalized cost function value as a func-
tion of the simulation number for the different algo-
rithms and building locations.

algorithm for Houston, and let x∗G denote the iter-
ate with lowest cost function value obtained by the
sGA for Houston. In Figure 5, we show, for λ ∈

- 1398 -- 1406 -

an
nu

al
pr

im
ar

y
en

er
gy

in
kW

h/
(m

2
a)

0

20

40

60

80

100

120

140

160

180

200

50
.4

9
52

.5
3

lighting

0.
34

83
3.

94
8

heating

87
.8

2
29

.9
0

fan
48

.9
6

42
.0

4
cooling

18
7.

6
12

8.
4

total

Legend base design

minimum of sGA

Figure 4: Primary energy consumption for lighting,
heating, fan, cooling, and total primary energy con-
sumption for Houston, TX.

{0,0.01, . . . ,1}, the ratio f (x(λ))/ f (x(0)), where

x(λ) � x∗H + λ (x∗G − x∗H) . (6)

That is, x(0) = x∗H and x(1) = x∗G. The graph
shows discontinuities on the order of 3% of the cost
function value. Such large discontinuities can cause
the HJ algorithm to fail far from a minimum.

We believe that the discontinuities are caused in
computations of time-independent values, such as
values that are used to auto-size the HVAC system.
To support this claim, we show in Figure 5 the vol-
ume flow rate as determined by auto-sizing the heat-
ing system for all five north zones V̇N(x). Some per-
turbations of x change V̇N(x) by as much as 25%.
This may be because EnergyPlus may fail to solve the
zone heat balance equations after a set point change
in the zone air temperature, or because the time inte-
gration mesh for the heating design day may change
from one simulation to the next.

Proposal for a Hybrid Optimization Algorithm

Since the sGA searches on the mesh M(l,1) and
stops after a finite number of iterations, it would be
easy to combine the sGA with the Coordinate Search
algorithm to produce a GPS algorithm that uses the
sGA for the global search and uses the Coordinate
Search for the local search. Then, the global explo-
ration of the sGA reduces the risk of getting attracted
by a local minimum which is not global, and the
Coordinate Search enables clear convergence state-
ments in domains where the cost function is smooth.

CONCLUSION
By using optimization, we achieved energy

savings between 7% and 32%, depending on the
building location. Since the labor to connect

� � � � �
� � �

� � � � � � � � � � �
� � � � � � � �

� � � � � � � �

� � � � � � � � �

� � � � � � � � � � � � � � � � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

� �
� �

�
� � �

� � � �
� � � � � � � � �

scalar λ

f(
x(

λ)
)

f(
x(

0)
)

an
d

V̇
N
(x

(λ
))

in
m

3 /
s

0 0.2 0.4 0.6 0.8 1.0
0.8

0.9

1.0

1.1

1.2

1.3 f (x(λ))
f (x(0))

V̇N(x(λ)) in m3/s

Figure 5: Cost function value f (x(λ)) normalized
against f (x(0)) and volume flow rate as computed
by the heating system auto-sizing for all five north
zones V̇N(x(λ)). The functions are evaluated on the
line between the minimum point obtained by the HJ
algorithm (at λ = 0) and the minimum point obtained
by the sGA (at λ = 1) for Houston, TX.

GenOpt to EnergyPlus and to define the optimization
problems was only a few hours, this shows that
optimization can yield considerable economic gains.
Clearly, such a design that depends nonlinearly on
13 design parameters could not have been achieved
without using optimization algorithms.

For all test cases, our sGA uses a number of
function evaluations that is comparable to the HJ
algorithm. However, the speed of convergence of the
HJ algorithm may have been reduced due to large
discontinuities in the cost function.

In two of the three problems, the sGA yields a
design with lower cost function value than the HJ
algorithm. This can be because the cost function has
discontinuities or because it may have several local
minima.

Both algorithms are good candidates for solving
the examined problems, but the computation time
could be reduced and the accuracy of the solution im-
proved if the simulation program allowed controlling
the error of the approximations to the cost function.

ACKNOWLEDGMENTS

This research was supported by the Assistant Sec-
retary for Energy Efficiency and Renewable Energy,
Office of the Building Technologies Program of the
U.S. Department of Energy, under Contract No. DE-
AC03-76SF00098, and through a Foresight Award
from the UK Royal Academy of Engineering.

- 1399 -- 1407 -

REFERENCES
Audet, Charles, and J. E. Dennis, Jr. 2000. “Pat-

tern Search Algorithms for Mixed Variable Pro-
gramming.” SIAM Journal on Optimization 11
(3): 573–594.

. 2003. “Analysis of Generalized Pattern
Searches.” SIAM Journal on Optimization 13
(3): 889–903.

Caldas, Luisa Gama, and Leslie K. Norford. 2002.
“A design optimization tool based on a genetic
algorithm.” Automation in Construction 11 (2):
173–184.

Crawley, Drury B., Linda K. Lawrie, Frederick C.
Winkelmann, W.F. Buhl, Y. Joe Huang, Cur-
tis O. Pedersen, Richard K. Strand, Richard J.
Liesen, Daniel E. Fisher, Michael J. Witte, and
Jason Glazer. 2001. “EnergyPlus: creating a
new-generation building energy simulation pro-
gram.” Energy and Buildings 33 (4): 443–457.

Deb, Kalyanmoy. 2000. “An efficient constraint
handling method for genetic algorithms.” Com-
puter methods in applied mechanics and engi-
neering 186:311–338.

. 2001. Multi-Objective Optimization using
Evolutionary Algorithms. Interscience Series in
Systems and Optimization. John Wiley & Sons,
Inc. ISBN: 1-58603-256-9.

Goldberg, D.E. 1989. Genetic Algorithm in Search,
Optimization, and Machine Learning. Adisson-
Wesley.

Hooke, R., and T. A. Jeeves. 1961. “’Direct search’
solution of numerical and statistical problems.”
J. Assoc. Comp. Mach. 8 (2): 212–229.

Polak, Elijah, and Michael Wetter. 2003. “Gener-
alized Pattern Search Algorithms with Adaptive
Precision Function Evaluations.” Technical Re-
port LBNL-52629, Lawrence Berkeley National
Laboratory, Berkeley, CA.

Press, W. H., B. P. Flannery, S. A. Tuekolsky, and
W. T. Vetterling. 1993. Chapter 20 of Numerical
Recipes in C: The Art of Scientific Computing.
Cambridge University Press.

Torczon, Virginia. 1997. “On the Convergence of
Pattern Search Algorithms.” SIAM Journal on
Optimization 7 (1): 1–25.

Wetter, Michael. 2001, August. “GenOpt – A
Generic Optimization Program.” Edited by
R. Lamberts, C. O. R. Negrão, and J. Hensen,
Proc. of the 7-th IBPSA Conference, Volume I.
Rio de Janeiro, Brazil, 601–608.

Wetter, Michael, and Elijah Polak. 2003, August.
“A convergent optimization method using pat-
tern search algorithms with adaptive precision
simulation.” To appear: Proc. of the 8-th IBPSA
Conference. Eindhoven, NL.

Wright, Jonathan, and Raziyeh Farmani. 2001,
August. “The Simultaneous Optimization of
Building Fabric Construction, HVAC System
Size, and the Plant Control Strategy.” Edited by
R. Lamberts, C. O. R. Negrão, and J. Hensen,
Proc. of the 7-th IBPSA Conference, Volume I.
Rio de Janeiro, Brazil, 865–872.

NOMENCLATURE
Conventions

1. Vectors are always column vectors, and their el-
ements are denoted by superscripts.

2. Elements of a set or a sequence are denoted by
subscripts.

3. f (·) denotes a function where (·) stands for the
undesignated variables. f (x) denotes the value
of f (·) for the argument x. f : A → B indicates
that the domain of f (·) is in the space A, and
that the image of f (·) is in the space B.

4. We say that a function f : R
n → R is once con-

tinuously differentiable on a set S ⊂ R
n with re-

spect to x ∈ S if f (·) is defined on S, and if f (·)
has a continuous derivative on S.

5. For x∗ ∈R
n and f : R

n →R continuously differ-
entiable, we say that x∗ is stationary if ∇ f (x∗) =
0.

6. We say that a function f : R
n → R is coer-

cive if limk→∞ f (xk) = ∞ for every sequence
{xk}∞

k=0 ⊂ R
n such that ‖xk‖ → ∞, as k → ∞,

for some norm ‖ · ‖.

7. We denote by {ei}n
i=1 the unit vectors in R

n.

Symbols

f (·) cost function
l lower bound of the design parameter
n dimension of the design parameter
u upper bound of the design parameter
x design parameter
a ∈ A a is an element of A
A ⊂ B A is a subset of B
A∩B intersection of the sets A and B
X feasible set of the design parameter
R set of real numbers
Z set of integers
N set of natural numbers
∆k mesh size factor at the k-th iteration
� equal by definition

- 1400 -- 1408 -

